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BUCKLING OF THIN-WALLED CYLINDER UNDER
AND INTERNAL PRESSURE 1

AXIAL COMPRESSION

By Hscr Lo, H.mOLD CBATE,and EDWAIWIB. SCHWARTZ

SUMMARY

An inzwtigation was made of a thhwalled cyclindw under
azid compress-ionhnd ram”ow ‘internal pre8sure8 to study the
eiect of theinternalprewure on b compress-icebucklings%rewof
the cylinder. A theoreticalana.?ysisbiwedm a Azrg.+dejlwtion
theory was also made. l%e theoretically predicted increa~e of
cotnpressire buckling strew due to intiwnal premure agrees
fairly well with the experimental re8ult8.

INTRODUCTION

The buckling of thin-walled cylinders under axial compres-
sion and IateraI pressure has been investigated by Fliigge
(reference 1) who found that the effect-of the internal pres-
sure on the buckling load is negligible. I?Mgge’s conclusion
is in contradiction to the results of a series of tests, made at
tbe Langley Aeronautical Laboratory of the NACA, of two
curved panels under axial compression and wrious Mend
pressures. These test results, reported in reference 2, showed
an appreciable strengthening effect of the Iatemd pressure
on the bucklhg load of tbe curved panels. The apparent
discrepancy between these experimental results and the
prediction by Fliigge’s theory made it desirable to inYe&
gate this problem further. Consequently, additional tests
were made of a cylinder under axiaI compression and various
internal pressures for which results are presented her&
A theoretical analysis of t-his problem is also presented
dich differs from that of Fltigge in that the preeent anslpis
is based on Iarg+, rather than small-, deflection thecg.

APPARATUS AND PROCEDURES

Test specimen.—The specimen used for the tests was a
@inder, 32 inches Iong with a 15-inch inside radius, made
of 24S-T aluminum aUoy sheet of 0.0249-inch a-rerage
thickness. It was cIosely rivetd a.roumdtwo heavy steal
rings, one at each end. The butt jotit of the two Longi-
tudinal e~~es was covered both inside and outside by straps,
0.032 inch thick and 1% inches wide, along the total length
of the @.nder. (See fig. 1.)

The two heavy steel rings were made of%- by 4-inch steel
bar stock rolled to t-he diameter of the cylinder. T-ivo %-
by 2-inch spreader bare -were used to reinforce the ring as
shown in @gure 1. A ring tith a fl~~e, machined flat, was
fastened to the % by 4-inch steel ring to provide an even
bearing surface on which a steel cover pIa.te was fitted.
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FIGUZZ l.—Test qmhnen and stmiu-ExE positions. -——

Three steel blocks were pIaced on top of the plate. Tbe
applied compressive load was transrm‘tted from the machine
head through the three steel blocks to the cover pIate.
The joint between t-he cylinder and the cover pIates was .-,
se&d.

Equally spaced along the inside circumference of the cyhn- -
der at midIength were 10 strain &wes, and directly opposite
to t-hem on the outside were 16 more gages. These gages
were pIaced to measure strains in the longitudinal direction. ‘—
Six more gages, three inside and three outside, were placed

..—

to measure the circumferential strains.
—The specimen was subjected to corn- -Test procedures.

preesive load in the 1,200,000-pound unkrsa.1 testing ma-
chine of the Langley Structures Research Laboratory. Com-
pressed air was used to produce internal pressure, which
could be maintained at any desired constant. -m.lue. The
pr~sure was measured by a manometer. The strains were
recorded by standard eIectric strain-gage equipment and
the end-shortening was measured by dial gages.

The cylinder was preloaded and the strain-gage readings
were taken. The three steel bIocke were so adjusted th~t —
a.11longitudinal strain-gage readings around the oircumfer- ““—
ence of the cylinder -wereequal.

I SUpemdes A-AC A TX- 2Ml, ‘Tmckliu OfThh-WeikdCybder under Axial Compredcm and Intemzl PI=SIJR” by Hau k HaroId Crate, M Edward B. Schwartz, 1950.
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The compr&sed air was then let into the cylinder until
the desired internal pressure.was reached. The rmial com-
premive load was increased in increments until buckling was
observed. At each load increment, all gage readings were
recorded. The load was then decreased untiI the buckles
disappeared and increased a second time to check the reading
obtained the first,time. During all these steps the iqternal
pressure was ret-Lintained constant.

The axial load was then reduced and the intermd pressure
was changed tcI another value. For each vahe of internal
pressure the same procedure was repeated.

EXPERIMENTAL RESULTS

A typical experimental rewdt is shown in figures 2(a)
and 2(b) for the case in which the internaI pressure was 1%
psi. In figure 2(u) the compressive load is plotted against
the strain-gag+ readi~ for fo,yr dill~rent pairs of gages,
within the range where the load-strain relation is linear. ID
figure 2(b) the shin-gage reading ia plotted for all strain
gagw at three compressive loadings close to the buckhng
load. Figure 2(b) indicatw that budding occurs at a com-
pressive load of 12,700 pounds between strain gages 22 and
23. (Note the intersection of the curves at two consecutive
loadings.) A buckle at this location was observed during the
test. The compressive load at which this phenomenon
occurs is considered the buckling Ioad.

Since the buckling occurs locally and not simultaneously at
alI the gagw, the loCaIbuckling strain is obtained by dividing
the buckling load by the sIope of the Iinear portion of the
load-strain curve corresponding, to the gage at which the
buckling occum. .The corresponding stress is the buckling
stress. The buckling stresses for various internal pressures
were determined in this same way.

The resuhs me tabulated in table 1 and plotted in figure 3
in terms of the two nondirncneionrdparameters

,, R
u“=%- 7- ‘= ‘“ “-

where LT=c,is the buckling stress, p is the internal pressure,
R is the radius of the cylinder, t is the wall thickness, and
E is Young’s modulus. Except for the first test correspond-
ing to ~= 0.1028 in which the cylinder had undergone no
previous buckling, all the teats were carried out on the cylin-
der with possible permanent set.

THEORETICAL RESULTS

A theoretical analysis for calculating the bucIding stress
of a cylindrical shell under axial compression and internal
pressure was obtained by a “larg~deff ection” theory for

.

(a)14fnauport oflrad-strain ourva for four tgp[cal pairs of sko[n gngcs.

FIWEE 2—1’ypkd experlnrednl result. Intcrrral IMWSSOre,1~ PSI.
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FrmRE 2.—Concluded.

which det.adsare given in the appendix, Tlw lmge-deflection
theory was first advanced by Iron Kfwnl&n and ‘him
(reference 3) in the study of buckliug stress of cylimlrirrd
shells under axial compression (but wit.hcmt internal pMS-
sure). This theory was subsequently improved by Leggct L
and Jones (refmence 4). In reference 3 the buckling stress
was shown to depcnd on whether th~ Ioad was applied hy a

.-
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TABLE 1
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FUXEE 3.—Compxfson of theoretfenl and espedmmtaf rendts of the buckltng smeis at

various internal pressmes.

rigicl Iomiing machine or by a dead-might maobine. In
the present anaIyais, the loading machine is assumed to be
rigid.

The esisting procedures for computation of the bucHing
stress by Iarge-deffection theory involve the solution of four
simuhaneous nonliiear equations for each pressure loading.
The numerical -work is quite lengthy. The method used in
t-hepresent study introduces a fifth equation which governs
the conditions at -which the buckling occurs. The flft.h
equation is based on consideration of conser~at.ionof energy,
which is an extension of Tsien’s buckling criterion given in
reference 5. Although a solution of five simultaneous equa-
tions is now necesa~, the numerical work is actually

FIGO_EE4.-Theoretfesl and expedmental reemlisdmwfng the fncrement of bncklbsg ‘rows
doe to inknaf pressme.

reduced to a amaUfraction of that ~uired if the existing
procedures were used. This reduction in labor is made
possible through a proper choice of the parameters in the
equations and the process of the computations. The results
calculated by the present method are presented in table 1
and are represented by the solid-limecurve in figure 3. The
curve is cut off at a value of ;GZ0.605, corresponding to
~=0.169. This constant value of ;.,=0.605 for ~>0.l&l
is the same asi that obtained by the ckwaical theory.

DISCUSSION AND CON-~lJSIONS

From the theoretical and experimental results shown in
figure 3, the internrd pressure is seen to have an appreciable
strengthening effect on the cylinder. AIthongh the two
curves obtained from theoretical and experimental reedts
do not coincide, both show the same trends as regmds the
effect of irkermd pressure on the buckling stressesi - ~ the
increment. of the buckling stress A;., due to the presence of
internal pressure (that is, the diference between the bu&l@
stress with the pressure F.r and that without the pressure
G.,);-O) iS plotted agafit the ~te~ pr=ure, as sho~
in figure 4, a good agreement is obtained betvreen the theor-
etical and experimental results. These data indicate that,
although further improvement of the theory is necessary
for the determination of the magnitude of the compressive
budding stress, the theory givea a fairly good prediction of
the increase of buckling compressive stress that may be
e.~ec.ted as a result of interred pressure. The discrepancy
between the theoretical curve and the experimental curve
of figure 3 is be~leved to be caused by such factors as manu-
facturing imperfections in the specimens, material irregulari-
ties, and energy absorbed by the loading machine, which
have not been incIuded in the theory.

L_4KQLET AEROX.LUTIC&L hBOR~TORY,

NwmomL ADmOEY CO-TTEE FOR AERONAUTICS,

IANGLET FIELD, VA., Mohv 12, 19.@.
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APPENDIX

THEORETICAL ANALYSISOF BUCKLING LOAD OF CYLINDRICALSHELLS
PRESSURE BY LARGE-DEFLECTION

BACKGROUND OF THEORY

The use of large-deflection theory for shells under axial
compression was fit. ndvanced by Von Khrdn and Tsien
(reference 3) in an attempt to explain the discrepancies
between the buckling Ioads predicted by classicaI theory and
those obtained from experimental results. (See, forinstance,
reference 6.) The results of reference 3 indicated that
cyhmlrica.1shells can be maintained in equilibrium in the
buckled state by a compressive load considerably Iower than
that predicted by c.lassicaItheory. A plausible explanation
of this result is that, befor~ the chwical buckling load is
reached during a test, the cylindrical shell ‘(jumps” from an
equilibrium unbuckled state to an equilibrium buckled state.
The physicaI phenomena of the jump were further examined
in reference 5 by Tsieu.

The treatment of Von Ktirrmtnand Tsien in reference 3
was left incomplete, however, in that tbe equilibrium posi-
tions at the buckled state were determined by differentiating
the total potential energy with rmpect to some bu~ not all of
~he physical ptikametersinvolved. The resulting equations
gave a relation between the average compressive stress u an~
the end-shortedng ● in terms of the remaining paramete~s,
A set of curves of a against c were thus obtained for various
combinations of the remaining parameters.

Improvement of the theory of Von K&u&n and Tsien was
made by Leggett and Jones (reference 4), who took the
derivatives of t+e energy ,yith respect to all the parameters
and thus obtairied a single curve between a and e, represent-
ing dl equilibrium positions of the cyhdrical ahelI in the
buckled state. The same result was obtained by Micbicleen
(reference 7) hi a simiIar process. Such a curve is shown
by J3C of Ii&rq 6. . - -...

Theoretically, when the cyIinder is compressed, the relation
between u and e follows the straight Iine ODA which repre-
sents the unbuckled state and will reach tbe point A if
everything is perfect; the cyIinder then buckles and. the
relationship follows the curve ABC which represents the
buckled state. Before point A is reached, however, some
external disturbance may possibly cause the cylinder to jump
from the unbuckIed state represented by the point D to the
buckled state represented by the point E. The positions
of D and E on the respective curves depend on the actuaI
physical conditions of the jump.

If the physical condition which governs the jump is known
or defined, the buckling stress corresponding to the point D
can be obtained directly
finding the curve ABC.
the amount of numerical
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without gokg b;gh the jabor of
This prucedure can greatly reduce
work.

UNDER AMAL COMPRESSION AND INTERNAL
THEORY

D

c

o c
FIG~EE 5.—ReMlon between the average oomprewivo stress r and the cnd.shc.rtedng ,.

In reference 5, Tsien in~mduced a witirion which governs
the jump DE for the condition of loading obtained in a
rigid testing machine; namely, that the strain energy remains
the same before and after the jump and that the jump occurs
at constant end-shortening. According to this criterion
the line DE must be vertical and must cut the curvc ABC
in such a way that the two shaded areas ADG and C~IIE
are equal. In fact, the area ADG represents the additional
energy that is needed to assist the cylinder in jumping from a
condition represented by D to that represented hy G md
the area GBE represents the energy thaLis given up by the
cylinder when it arrives at the lower energy level, point E,
The energy represented by the area ADG is very small,
and therefore a slight dieturbance from tho surrounding air
might assist the cylinder to jump from the unbuckled stat~
to the buckled state at a compressive stress well Mow WI
cIassical buckling stress corresponding to point A.

Since the external disturbance is required to assist tho
cylinder to jump from the state corresponding to D to that
corresponding to G, a slightly larger external disturlmncc
can -well cause the cylinder to make the transition from
the state represented by D’ to that represented by B,
except that in the case in which the cylinder jumps from
D’ to B the cylinder absorbs the energy of the external
disturbance and doea not m-emit it. The lmclding st.rcss
can be then as low as point D’. This fact was pointed
oub by Tsien in reference 8.
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In addition to the two criterions just mentioned, there
are still others that m-ght be used. In view of the fact
that the choice of the budding criterion is a much less
important factor in the determination of buckling stress
thtm are such other factors as, for ~ple, the initifd
imperfections, Tsiau’s criterion of reference 5, as represented
by the Iine DE, is as reascmabIe as any other, and the
choice of this criterion greatly simpliiks the numerioal work.

Tsien’s criterion of referenoe 5 cannot be applied directly
to the present analysis, however, because with the presence
of the internal pressure the strain energy is no longer the
same before and after the jump. b addition, the crnterion
is applied herein in quite a diflerent manner from that of
reference 5. In referenca 5, a series of values of wave num-
ber n and aspect ratio P were chosen and the criterion was
appIied to each pair of dues of n and L3;tbe pair of vahws
of n and /3which ga~e tbe minimum value of buckling load
was considered to correspond to the buckling condition.
b the present amdysis, since the variation of a with e can
be plotted only as a single curve, this criterion need be
applied only once for each internal preasmre. The results
correspond to the minimum-potential-energy condition.

b the derivation of the. present a&@s, the basic equa-
tions in reference 3 are first estended to include the effect
of internal pressure, ‘l%ien’s criterion governing the jump
for rigid machine loading (reference 5) is modified, and the
buckling stress is fhm.llyobtained.

sYMsoM

A list of symbols follows. Most of the symbols used in the.
present report are the same as those in reference 3; exceptions
are the use of ~ for Poisson’s ratio, h for wave Ieng@ and f?
for aspect ratio of the buckled waves.
h= half wave length in Iongitudinrd

direction
hb half -wave length in circumferential

direction
fo,fl,f2 . parameters used in deflection function
m number of waves in longitudinal

direction within length equal to
circumference of cyEnder

n number of waves in circumference
P internal pressure
t thickness of cylinder -dI
% v coordinates measqred in longitu-

dinal and circumferential directions,
respectively

u component of displacement of a point.
on median surface of shell in
@irection

w component of displacement of a point
on median surface of shell in radial
direction

●

u

Ii?
n-”
m,

meawre of average circumferential -.—
stress per wa-re length in longitudinal
direction

end-shortening of cyhnder .-
a~erage compressive stress

aspect ratio of buckled waves

Poisson’s ratio
total potential energy
Young’s modulus
strain energy

certti functions of D

certain functions of p and fl

(D represents the functions Dl, D2,
. . . D,)

(D represents the functions D,, D,,
. . . D,)
radius of cylinder
eIastic extensional energy
bending energy
work done by applied compreaaiveIoad
-workdone by internal pressure

R
7=E —

t

7=(++D’
Subscripts:
o
%
cr

-.

pertaining to buckling condition
unbuckIed state just prior to buckling ‘-—
buckling condition -.

.
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DERIVATION OF BASIC EQUATIONS

Three basic equations are derived in the following anaIysis to include the

FOR AERONAUTICS

effect of intmmalpreamm. ‘rh(}}fme the L!X-

pression for the total potential energy, the expression-for t.~estrain energy, and the relation bet~vecnthe eml-ai~ortctil~ and
the average compressive stress.

In order to oalcuIate the total potont,ial energy,’%e work done by the internal pressure should l.wincludrd in addition
to the energies WI, J1’%,and H;, which are given by equations (25), (26), and (27) of reference 3 as:

where a, 6, p, and v have been changed to l., ha, P, and y,
respectively, ta agree with the notation of the presen~
report and where

C=:f’n’($f’+f’)-$fl

‘=:j’n’(if’+j’)

‘=if’n’(+fl+f’)
and

‘=n’(ifl+f’y

The work done by the internal pressure is,
wave panel, :

-.

—.

for a complete

The negative sign is introduced because the radial deflection
w is considered positive inward.

If the same deflection function given in equation (16) of
reference 3 is used, that is,

#=(-f’’+!)+#(c‘ %“++%)+‘SYCos?+ZCos
(4)

(1)

(2)

(3)

(5)

the work done by the internal pressure lxwomcs

~p= _@~~a~b jo+&
() 4

If the total potential energy

4= TJ’,+ T]’,– W,-li’p

is clifferentiated with respect to j. tind the derivative is set
equal to zmo, the following expression is obtained:

(j,+:=+p3 ) pR
~ f12+flf2+.fa~ – p:–~ (6)

substitute this oxprwion ink cqunticms (l), (2), (3}, and
(5) for W,, W2, TV8,and WP, respectively, and the following
equations me obtained:

(7) -

(8)

(9)
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“ ‘8[ws&)(%3-;EtLhb

where

(lo)

Equations (7) to (10) maybe expressed in terms of the
nondimensional pmametem F, ~, p, ~, t, and ~ as

m1=4@+2pF3+F)+T’t4D2 +TP(–D3)+r2~4 (11)

T,=TZC2DS (12)

TV,=82+8PZF+Tq~ZDl (13)

~2=~1+B2P +B3P2%P3< &P4

“=(’B’+a(1+2’)
“=(’B’+*)+3’+”
D,= B,+B,(p+p~

The nondimensional total-potential-energy parameter T is

J=Tr,+Tr,-Tr,-Tr,

The relation bebween the end-shortening ● and the average
compressive stre= can be determined horn equation (23) of ““
referenoe 3 by integrating; thus, —

1 J‘“~dx
‘=–x ~ ax

‘(~+’~)+*n’’2(:f’+’*2+f
where CYIE,as determined from equation (24) of reference 3,
together with equation (6) herein is

a pR—.—
E Et

Theiefore, the relation between Z
form becomes

.-

.-
and F in nondimensiomd “”

R
E=E—t.

—.- . 1
=U+JLP+g TC2DL (17)

Equations (15), (16), and (17) are for cylinders in the buckled
state. For cylinders in the unbuckled state, the correspondi-
ng equations are

Zu=–4Fu’+2P~uF+m (18)

~u= 4(7U’+2P7U5+3 (19)

7u=7=+Jl~ (’q

EQULTJBBKUM X)SLTIOXS OF CYLIXDEELS LX BUCXLED STATE

The equilibrium positions of cylinders in the buckled state .
can be obtained b-j-differentiating the tattd potential energy
of equation (15) with respect to each of the pamuneters T,
~, P, and P and b-y setting the derivatives equal to zero.
Fo~ simultaneous, nonhuear equations are thus obtained:

v= -[(F-+~)’DL-’(’’)a~0=

(21)



where

(D,),=; 6’(1 +2p)

(Dz),=Bz+ 2B*P+ 3B,P2+2B,P’

‘D’’’=2@’+lh)-
(DA=;(1+2P)

(D&=Bd(l + 2P)

(D,)~=P2 (:+ P+ P’)=2D,

(DJ~=B/+&’p+B3’p’+ B;pg+; B;p4

(D,); =2B;(I +2P) ‘“ .

(D,)~= 2B/

(D,)6=B:+BJ(P+ P9

and

[
1 ~+~ “

f14 B’ 1“==8 4 (1 +&)s+(l +9&)9+g (9+/9~8

[
B:=l 9 f14

/34 p4

142 (l+ f?9a+(l.+9/3q’+9 (9+698

[
B,_l 11 @ B4 f14

a –z T (1+/99a+ (l+9@98+g (9+f?781
B4’=;& -
B:=

6(1 :/P) ;$9’(1+3P9

B;=-. 4
6(1-@)P4

Let

“=(=-W’D’

The four simultaneous equations (21) become

F’=(~f)z(2DJ-(q~)Da+2#D~

F’ =(~ ~)z(2Da)—(7f)(l .5Da)+ D~+ ~2D6

~’= [(T~)TDJP—(qt)(Da)p+ (D4J+ ~2(DsM~,

17
7= [(TIt)7DJ8- h t)(DJiFU2Jp+ #@k)ol ~—n vG

-P

(22a)

(25b)

(22C)

(22d)

-, ..:
Theoretically these four simulttimous equations W] Iw “-.
solved for q, f, p, and /? in terms of F for n given prcssurr. If “1.
they are substituted into equation (17), a rcht ion Mwecn
end-shortening Z and the compressive stress 6 is obtained
which represents rdl equilibrium positions at the lmcklrd
state. In fact, this solution is csscntitilly thtit ohtaincd IJy
Legge~t rmdJones (reference 4) and Michiulsm (reference 7)
for cylindels with axial compression hut no internal pressure.

Practically, however, the solution of the four simuhncous
equatioms(22) requirw a long and tedious numerical prmcss.
If only the buckling stress is required, cmlchtion of only ono
point on the curve of 7 against Zratlwr thtin tho whole curvo
is necessary. This soIution can be obt fiincd by the intro-
cluction of one more equation which governs the condi(ion
at buckIing.

BUCKLING CRITERION

In reference 5, Tsien gave the foIIowing criterion which
governs the condition at buckling: That the strain-enmgy
of the buckled cylinder is the same as the strain energy of
the unbuckled cylinder when thu cyhkr is tcstml in tlw
rigid testing machine so that the end-shortening does noL
change ‘during buckling. This criterion is apparently
established from consiclerntions of conservation of oncrgy.
Although other physicaI criterions can bc used (for instance,
see reference 8), the criterion of reference 5 was chosen nnd
extended to include the case for which the internal prcssuro
is present. The choice of this criterion simplifhs the nunwr-
ic.d work.

When internal messure is nresent.in the c~lindcr. work is
done by tha press&e during Luclding.
the buckled state is no longer equal to
state, but

‘rho;train &crgy in
thut.in the unbuckled

(23)

where A~P is the work done by the pressureduring buckling,
or — -.

=Tr=– (ir,), (24)

Equation (14) cm ba rearranged as follows:

Therefore, for the unbuckled stn.te,tho lust hum is cdiminatcd
and

(~,)u = 8(17+p7@) (2G)

Then, from equations (24), (25), and (26)

(27)
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,~ e ‘bucWg-<~ritiiiFfi=be-~&”&”(?qtititi&ti—~Z-fl-=~(2T)_j--=’:

~

~.——.=. ~--. v-~:-. L----- —.
me mtemechon of the~

-~ values 7 and p which are calIed 20 and po. The corresponcl-.~

~=~. +8 PP&-z# – ing wdues of (q~). and (~z)a=e computed and substituted in-~, PVWI
equation (22d) from which the pressure p em be” o&u- ~

or, from equations (16) and (19), lated. l?or each assigned value of& there are obtained cor-.. ,
responding values of ? o and ~ k ewe of ~0 against ~

4~+2P~~+~ +q2r4Dr—tI13D~+FD.+T2PD. can thus be determined. If the follotig reIations are used -

Site the end-shortening remains unchanged during budding,
that is, Z=G, the following rdation is obtained from equa- Z,=@)o=Z+; (~ L?DJ.
tions (17) and (20): -.

If this reIation is substituted in equation (28) and if the

‘e1ati0n7’=(=-; )-
2P TD~ is used, the bucklii criterion

becomes

the reIation between F=,and ~is obtained as shown in @ure 3. ““’

OUT-OFF BGC=G STRESS

When equation (31) is derived from equations (22b) and
(30), a factor (~~)=0 is also obtained. Lf this re.Iation is “_~
used instead of equation (31), it can be shown that. the
bucld.ing stress F., cm ne~er exceed the classical buckling

(~f+qf)2 D2— )*D? –(q r) D3+D4+?l’D5
stress 0.605 which is independent of pressure.(30) - —

The solution of the five equations (22a), (22b), (22c), (22d),
and (30) gives the buckhng stress for a given interred pres-
sure. The folIov&g section presents a very simple method
for the soIution of these five simultaneous equations. “

METHOD OF SOLU’IT02J

From equations (22b) and (30) and equations (22a) and
(22b), the foIIovring equations are obtained:

(31)

For a preassigned -due of@, assume various dues of p and
compute ~~and # from equations (31) a.ncl(32). Substitute
these vahes in equations (22a) and (22c) to obtain (7)= and
(2),, respect.kely. PIot- both (~). and (7)= against p.

.-
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